Self-adaptive inexact proximal point methods
نویسندگان
چکیده
We propose a class of self-adaptive proximal point methods suitable for degenerate optimization problems where multiple minimizers may exist, or where the Hessian may be singular at a local minimizer. If the proximal regularization parameter has the form μ(x)= β‖∇f (x)‖η where η ∈ [0,2) and β > 0 is a constant, we obtain convergence to the set of minimizers that is linear for η= 0 and β sufficiently small, superlinear for η ∈ (0,1), and at least quadratic for η ∈ [1,2). Two different acceptance criteria for an approximate solution to the proximal problem are analyzed. These criteria are expressed in terms of the gradient of the proximal function, the gradient of the original function, and the iteration difference. With either acceptance criterion, the convergence results are analogous to those of the exact iterates. Preliminary numerical results are presented using some ill-conditioned CUTE test problems.
منابع مشابه
Convergence rate of inexact proximal point methods with relative error criteria for convex optimization
In this paper, we consider a framework of inexact proximal point methods for convex optimization that allows a relative error tolerance in the approximate solution of each proximal subproblem and establish its convergence rate. We then show that the well-known forward-backward splitting algorithm for convex optimization belongs to this framework. Finally, we propose and establish the iteration-...
متن کاملAn inexact alternating direction method with SQP regularization for the structured variational inequalities
In this paper, we propose an inexact alternating direction method with square quadratic proximal (SQP) regularization for the structured variational inequalities. The predictor is obtained via solving SQP system approximately under significantly relaxed accuracy criterion and the new iterate is computed directly by an explicit formula derived from the original SQP method. Under appropriat...
متن کاملA Comparison of Rates of Convergence of Two Inexact Proximal Point Algorithms
We compare the linear rate of convergence estimates for two inexact proximal point methods. The first one is the classical inexact scheme introduced by Rockafellar, for which we obtain a slightly better estimate than the one given in [16]. The second one is the hybrid inexact proximal point approach introduced in [25, 22]. The advantage of the hybrid methods is that they use more constructive a...
متن کاملAn Accelerated Inexact Proximal Point Algorithm for Convex Minimization
The proximal point algorithm (PPA) is classical and popular in the community of Optimization. In practice, inexact PPAs which solves the involved proximal subproblems approximately subject to certain inexact criteria are truly implementable. In this paper, we first propose an inexact PPA with a new inexact criterion for solving convex minimization, and show that the iteration-complexity of this...
متن کاملInexact scalarization proximal methods for multiobjective quasiconvex minimization on Hadamard manifolds
In this paper we extend naturally the scalarization proximal point method to solve multiobjective unconstrained minimization problems, proposed by Apolinario et al.[1], from Euclidean spaces to Hadamard manifolds for locally Lipschitz and quasiconvex vector objective functions. Moreover, we present a convergence analysis, under some mild assumptions on the multiobjective function, for two inexa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comp. Opt. and Appl.
دوره 39 شماره
صفحات -
تاریخ انتشار 2008